Spatial prediction of the mark of a location-dependent marked point process: how the use of a parametric model may improve prediction
نویسندگان
چکیده
We discuss the prediction of a spatial variable of a multivariate mark composed of both dependent and explanatory variables. The marks are location-dependent and they are attached to a point process. We assume that the marks are assigned independently, conditionally on an unknown underlying parametric field. We compare (i) the classical non-parametric Nadaraya–Watson kernel estimator based on the dependent variable (ii) estimators obtained under an assumption of local parametric model where explanatory variables of the local model are estimated through kernel estimation and (iii) a kernel estimator of the result of the parametric model, supposed here to be a Uniformly Minimum Variance Unbiased Estimator derived under the local parametric model when complete and sufficient statistics are available. The comparison is done asymptotically and by simulations in special cases. The procedure for better estimator selection is then illustrated on a real-life data set.
منابع مشابه
Real-time Prediction and Synchronization of Business Process Instances using Data and Control Perspective
Nowadays, in a competitive and dynamic environment of businesses, organizations need to moni-tor, analyze and improve business processes with the use of Business Process Management Systems(BPMSs). Management, prediction and time control of events in BPMS is one of the major chal-lenges of this area of research that has attracted lots of researchers. In this paper, we present a...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملPredictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive
A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...
متن کاملBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 47 شماره
صفحات -
تاریخ انتشار 2011